Image Filtering

Reading:
—Chapter 7, F&P

Due: Problem Set 1

February 14, 2008

What is image filtering?

* Modify the pixels in an image based on some function
of a local neighborhood of the pixels.
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Linear Functions

* Simplest: linear filtering.

Replace each pixel by a linear combination of its
neighbors.

* The prescription for the linear combination is called
the “convolution kernel”.
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Convolution

flx,y]=1®g=>I[x—k,y-I]g[k,]
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Linear Filtering
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Blur Example
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Linear Filtering (warm-up slide)
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Linear Filtering (no change)
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Linear Filtering

Remember Blurring
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Sharpening Example
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Oriented Filters

Linear Image Transformation

¢ Filter bank:

* Mix of edge, bar, spot filters at multiple scales and
orientations

1st derivative of a gaussian 2nd derivative of a gaussian

6 orientations 6 orientations
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3 scales

In analyzing images, it’s often useful to make a
change of basis.
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Transformed image Fourier Transform, or
Wavelet Transform, or
Steerable Pyramid Transform

Self-inverting Transforms

« Same basis functions are used for the inverse transform
—_ —_
UF

Transpose and complex conjugate

Example: Fourier Transform

Forward Transform
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Inverse Transform
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FFT on-line book: http://ccrma.stanford.edu/%7Ejos/mdft/mdft.html

To et some sense of what
busis elements look like, we
plot a busis element —— or
rather. its real port -

as a function of x,y for some
fixed u, v. We get a function
that is constant when (ux+vy)

15 constunt. The nitude of

the vector ju, e

direction
gives an orenfation. The
function is a sinusoid with
this frequency along the
direction, and constant
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And larger still...
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Phase and Magnitude

+ Fourier transform of areal + Curious fact

function is complex — all natural images have
~ difficult to plot, visualize about the same magnitude
— instead, we can think of the transform
phase and magnitude of the — henee, phase seems to
transform matter, bul magnitude

* Phase is the phase of the largely doesn’t

complex transform
— Take two pietures, swap the

* legll.llllde is the phase transforms, compute
magnitude of the complex the inverse - what does the
transform result look like?

+ Demonstration
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Discrete-time, continuous frequency
Fourier transform
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Bracewell’s dictionary of Fourier
transform pairs
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Why is the Fourier domain useful?

« It tells us the effect of linear convolutions.

* There is a fast algorithm for performing the DFT,
allowing for efficient signal filtering.

* The Fourier domain offers an alternative domain for
understanding and manipulating the image.

Why is the Fourier transform useful?

« Convolution theorem:

« the Fourier transform of the convolution of two functions is the product of

their individual Fourier transforms
* Addition Theorem:

« The Fourier transform of the addition of two functions f(x) and g(x) is the

addition of their Fourier transforms F(s) and G(s).
*  Shift Theorem:

« A function f(x) shifted along the x-axis by a to become f(x-a) has the Fourier
transform e*“F(s) . The magnitude of the transform is the same, only
the phases change.

Similarity Theorem:

« For a function f(x) with a Fourier tranform F(s), if the x-axis is scaled by a
constant @ so that we have f(ax), the Fourier transform becomes (1/a)F(s/a). In
other words, a "wide" function in the time-domain is a "narrow" function in the
frequency-domain.

Modulation Theorem:
 The Fourier transform of a function f(x) multiplied by ~ cos(27fx) is
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Fourier transform of convolution

Consider a (circular) convolution of g and h

f=g®h




f=g®h

Fourier transform of convolution

Take DFT of both sides

F[m,n)=DFT(g®h)

f=g®h

Fourier transform of convolution

F[m,n]=DFT(g®h)

Write the DFT and convolution explicitly

F[m,n]
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Fourier transform of convolution
f=g®h

Flm,n]= DFT(g@h)

Flm,n]= ZZZg[u kv—1lhk, e 5)

=0 v=0 k./

Move the exponent in

ﬁffzg[u kv—1Ile (%%jh[k,l]

g®h
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Flm,n)= ZZZg[u k,v=1h[k, e
u=0 v=0 k.

Fourier transform of convolution
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Perform the DFT (circular boundary conditions)
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Fourier transform of convolution
f=g®h

F[m,n]=DFT(g®h)
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Change variables in the sum
M—k-1N-I-1
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F[m,n]= DFT(g@h)

Flm,n]= ZZZgu kv-Dhk.le [M ’:]

Fourier transform of convolution
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Perform the other DFT (circular boundary conditions)

= G[m,n]H[m,n]




Analysis of our simple filters
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Convolution versus FFT

* 1 dFFT: O(NlogN) computation time, where N is
number of samples.

« 2 dFFT: 2N(NlogN), where N is number of pixels on
a side

» Convolution: K N2, where K is number of samples in
kernel

o Say N=210, K=100. 2 dFFT: 20 22°, while
convolution gives 100 22°
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